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perturbation measured in infinity norm. Chazal et al. [12] generalized the result by showing

that the bottleneck distance is bounded from above by a distance dI called the interleaving

distance between two persistence modules; see also [6, 8, 17] for further generalizations.

Lesnick [22] (see also [2, 13]) established the isometry theorem which showed that indeed

dI = dB . Consequently, dI for 1-D persistence modules can be computed exactly by efficient

algorithms known for computing dB; see e.g. [19, 20]. The status however is not so well

settled for multidimensional (n-D) persistence modules [9] arising from Rn-valued functions.

Extending the concept from 1-D modules, Lesnick defined the interleaving distance

for multidimensional (n-D) persistence modules, and proved its stability and universality

[22]. The definition of the bottleneck distance, however, is not readily extensible mainly

because the bars for finitely presented n-D modules called indecomposables are far more

complicated though are guaranteed to be essentially unique by Krull-Schmidt theorem [1].

Nonetheless, one can define dB as the supremum of the pairwise interleaving distances

between indecomposables, which in some sense generalizes the concept in 1-D due to the

isometry theorem. Then, straightforwardly, dI ≤ dB as observed in [7], but the converse is

not necessarily true. For some special cases, results in the converse direction have started to

appear. Botnan and Lesnick [7] proved that, in 2-D, dB ≤ 5
2dI for what they called block

decomposable modules. Bjerkevic [4] improved this result to dB ≤ dI . Furthermore, he

extended it by proving that dB ≤ (2n− 1)dI for rectangle decomposable n-D modules and

dB ≤ (n− 1)dI for free n-D modules. He gave an example for exactness of this bound when

n = 2.

Unlike 1-D modules, the question of estimating dI for n-D modules through efficient

algorithms is largely open [5]. Multi-dimensional matching distance introduced in [10]

provides a lower bound to interleaving distance [21] and can be approximated within any

error threshold by algorithms proposed in [3, 11]. But, it cannot provide an upper bound like

dB . For free, block, rectangle, and triangular decomposable modules, one can compute dB by

computing pairwise interleaving distances between indecomposables in constant time because

they have a description of constant complexity. Due to the results mentioned earlier, dI can

be estimated within a constant or dimension-dependent factors by computing dB for these

modules. It is not obvious how to do the same for the larger class of interval decomposable

modules mentioned in the literature [4, 7] where indecomposables may not have constant

complexity. These are modules whose indecomposables are bounded by “stair-cases". Our

main contribution is a polynomial time algorithm that, given indecomposables, computes dB

exactly for 2-D interval decomposable modules. The algorithm draws upon various geometric

and algebraic analysis of the interval decomposable modules that may be of independent

interest. It is known that no lower bound in terms of dB for dI may exist for these modules [7].

To this end, we complement our result by proposing a distance d0 called dimension distance

that is efficiently computable and satisfies the condition d0 ≤ dI .

All missing proofs of this article appear in the full version [18].

2 Persistence modules

Our goal is to compute the bottleneck distance between two 2-D interval decomposable

modules. The bottleneck distance, originally defined for 1-D persistence modules [15] (also

see [2]), and later extended to multi-dimensional persistence modules [7] is known to bound

the interleaving distance between two persistence modules from above.

Let k be a field, Vec be the category of vector spaces over k, and vec be the subcategory

of finite dimensional vector spaces. In what follows, for simplicity, we assume k = Z/2Z.
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I Definition 1 (Persistence module). Let P be a poset category. A P-indexed persistence

module is a functor M : P → Vec. If M takes values in vec, we say M is pointwise finite

dimensional (p.f.d). The P-indexed persistence modules themselves form another category

where the natural transformations between functors constitute the morphisms.

Here we consider the poset category to be Rn with the standard partial order and all

modules to be p.f.d. We call Rn-indexed persistence modules as n-dimensional persistence

modules, n-D modules in short. The category of n-D modules is denoted as Rn-mod. For

an n-D module M ∈ Rn-mod, we use notation Mx := M(x) and ρM
x→y := M(x ≤ y).

I Definition 2 (Shift). For any δ ∈ R, we denote ~δ = δ ·
∑

ei, where {ei}
n
i=1 is the standard

basis of Rn. We define a shift functor (·)→δ : Rn-mod → Rn-mod where M→δ := (·)→δ(M)

is given by M→δ(x) = M(x+ ~δ) and M→δ(x ≤ y) = M(x+ ~δ ≤ y + ~δ). In words, M→δ is

the module M shifted diagonally by ~δ.

The following definition of interleaving taken from [24] adapts the original definition

designed for 1-D modules in [13] to n-D modules.

I Definition 3 (Interleaving). For two persistence modules M and N , and δ ≥ 0, a δ-

interleaving between M and N are two families of linear maps {φx : Mx → N
x+~δ

}x∈Rn and

{ψx : Nx → M
x+~δ

}x∈Rn satisfying the following two conditions (see full version [18] for the

details.)

∀x ∈ Rn, ρM

x→x+2~δ
= ψ

x+~δ
◦ φx and ρN

x→x+2~δ
= φ

x+~δ
◦ ψx

∀x ≤ y ∈ Rn, φy ◦ ρM
x→y = ρN

x→y ◦ φx and ψy ◦ ρN
x→y = ρM

x→y ◦ ψx symmetrically

If such a δ-interleaving exists, we say M and N are δ-interleaved. We call the first

condition triangular commutativity and the second condition square commutativity.

I Definition 4 (Interleaving distance). Define the interleaving distance between modules M

and N as dI(M,N) = infδ{M and N are δ-interleaved}. We say M and N are ∞-interleaved

if they are not δ-interleaved for any δ ∈ R+, and assign dI(M,N) = ∞.

I Definition 5 (Matching). A matching µ : A9 B between two multisets A and B is a partial

bijection, that is, µ : A′ → B′ for some A′ ⊆ A and B′ ⊆ B. We say imµ = B′, coimµ = A′.

For the next definition [7], we call a module δ-trivial if ρM

x→x+~δ
= 0 for all x ∈ Rn.

I Definition 6 (Bottleneck distance). Let M ∼=
⊕m

i=1 Mi and N ∼=
⊕n

j=1 Nj be two persis-

tence modules, where Mi and Nj are indecomposable submodules of M and N respectively.

Let I = {1, · · · ,m} and J = {1, · · · , n}. We say M and N are δ-matched for δ ≥ 0 if

there exists a matching µ : I 9 J so that, (i) i ∈ I \ coimµ =⇒ Mi is 2δ-trivial, (ii)

j ∈ J \ imµ =⇒ Nj is 2δ-trivial, and (iii) i ∈ coimµ =⇒ Mi and Nµ(i) are δ-interleaved.

The bottleneck distance is defined as

dB(M,N) = inf{δ | M and N are δ-matched}.

The following fact observed in [7] is straightforward from the definition.

I Fact 7. dI ≤ dB .
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graph G out of the intervals of M and N and their pairwise interleaving distances including

the distances to zero modules. If these distance computations take O(C) time in total,

the algorithm for computing dB takes time O(m
5
2 logm + C) if M and N together have

m indecomposables altogether. Given indecomposables (say computed by Meat-Axe [23]),

this approach is readily extensible to the n-D modules if one can compute the interleaving

distance between any pair of indecomposables including the zero modules. To this end, we

present an algorithm to compute the interleaving distance between two interval modules Mi

and Nj with ti and tj vertices respectively on their intervals in O((ti + tj) log(ti + tj)) time.

This gives a total time of O(m
5
2 logm+

∑

i,j(ti + tj) log(ti + tj)) = O(m
5
2 logm+ t2 log t)

where t is the number of vertices over all input intervals.

Now we focus on computing the interleaving distance between two given intervals. Given

two intervals IM and IN with t vertices, this algorithm searches a value δ so that there exists

two families of linear maps from M to N→δ and from N to M→δ respectively which satisfy

both triangular and square commutativity. This search is done with a binary probing. For a

chosen δ from a candidate set of O(t) values, the algorithm determines the direction of the

search by checking two conditions called trivializability and validity on the intersections of

modules M and N .

I Definition 11 (Intersection module). For two interval modules M and N with intervals

IM and IN respectively let IQ = IM ∩ IN , which is a disjoint union of intervals,
∐

IQi
. The

intersection module Q of M and N is Q =
⊕

Qi, where Qi is the interval module with

interval IQi
. That is,

Qx =

{

k if x ∈ IM ∩ IN

0 otherwise
and for x ≤ y, ρQ

x→y =

{

1 if x, y ∈ IM ∩ IN

0 otherwise

From the definition we can see that the support of Q, supp(Q), is IM ∩ IN . We call each Qi

an intersection component of M and N . Write I := IQi
and consider φ : M → N to be any

morphism in the following proposition which says that φ is constant on I.

I Proposition 12. φ|I ≡ a · 1 for some a ∈ k = Z/2.

Proof.

Mpi
Mpi+1 Mpi

Mpi+1

Npi
Npi+1

Npi
Npi+1

1

φpi
φpi+1 φpi

1

φpi+1

1 1

For any x, y ∈ I, consider a path (x = p0, p1, p2, ..., p2m, p2m+1 = y) in I from x to y and the

commutative diagrams above for pi ≤ pi+1 (left) and pi ≥ pi+1(right) respectively. Observe

that φpi
= φpi+1

in both cases due to the commutativity. Inducting on i, we get that

φ(x) = φ(y). J

I Definition 13 (Valid intersection). An intersection component Qi is (M,N)-valid if for

each x ∈ IQi
the following two conditions hold (see figure below):

(i) y ≤ x and y ∈ IM =⇒ y ∈ IN , and (ii) z ≥ x and z ∈ IN =⇒ z ∈ IM

I Proposition 14. Let {Qi} be a set of intersection components of M and N with intervals

{IQi
}. Let {φx} : M → N be the family of linear maps defined as φx = 1 for all x ∈ IQi

and φx = 0 otherwise. Then φ is a morphism if and only if every Qi is (M,N)-valid.

For proof see the full version [18].
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Set V L(I) := V (I) ∩ L(I), EL(I) := E(I) ∩ L(I), V U(I) := V (I) ∩ U(I), and EU(I) :=

E(I) ∩ U(I). Following proposition is proved in the full version [18].

I Proposition 19. For an intersection component Q of M and N with interval I, the

following conditions are equivalent:

(1) Q is (M,N)-valid.

(2) L(I) ⊆ L(IM ) and U(I) ⊆ U(IN ).

(3) V L(I) ⊆ L(IM ) and V U(I) ⊆ U(IN ).

I Definition 20 (Trivializable intersection). LetQ be a connected component of the intersection

of two modules M and N . For each point x ∈ IQ, define

d
(M,N)
triv (x) = max{dl(x, U(IM ))/2,dl(x, L(IN ))/2)}.

For δ ≥ 0, we say a point x is δ(M,N)-trivializable if d
(M,N)
triv (x) < δ. We say an intersection

component Q is δ(M,N)-trivializable if each point in IQ is δ(M,N)-trivializable (Figure 1).

Following proposition discretizes the search for trivializability (see the full version [18] for

a proof).

I Proposition 21. An intersection component Q is δ(M,N)-trivializable if and only if every

vertex of Q is δ(M,N)-trivializable.

Recall that for two modules to be δ-interleaved, we need two families of linear maps satis-

fying both triangular commutativity and square commutativity. For a given δ, Theorem 23

below provides criteria which ensure that such linear maps exist. In our algorithm, we make

sure that these criteria are verified.

Given an interval module M and the diagonal line ∆x for any x ∈ R̄2, there is a 1-

dimensional persistence module M |∆x
which is the functor restricted on the poset ∆x as a

subcategory of R̄2. We call it a 1-dimensional slice of M along ∆x. Define

δ∗ = inf
δ∈R̄

{δ : ∀x ∈ R̄
2,M |∆x

and N |∆x
are δ-interleaved}.

Proposition 22 follows from the observation that δ∗ = supx∈R̄2{dI(M |∆x
, N |∆x

)}.

I Proposition 22. For two interval modules M,N and δ ∈ R+, we have δ > δ∗ if and only if

there exist two families of linear maps φ = {φx : Mx → N(x+δ)} and ψ = {ψx : Nx → M(x+δ)}

such that for each x ∈ R̄2, the 1-dimensional slices M |∆x
and N |∆x

are δ-interleaved by the

linear maps φ|∆x
and ψ|∆x

.

I Theorem 23. Two interval modules M and N are δ-interleaved if and only if

δ > δ∗, and

each component of IM ∩ IN→δ
is either (M,N→δ)-valid or δ(M,N→δ)-trivializable, and each

component of IM→δ
∩N is either (N,M→δ)-valid or δ(N,M→δ)-trivializable.

Proof. =⇒ direction: Suppose M and N are δ-interleaved. By definition, we have two

families of linear maps {φx} and {ψx} which satisfy both triangular and square commu-

tativities. Let the morphisms between the two persistence modules constituted by these

two families of linear maps be φ = {φx} and ψ = {ψx} respectively. By Proposition 22,

we get the first part of the claim that δ > δ∗. For each intersection component Q of M

and N→δ with interval I := IQ, consider the restriction φ|I . By Proposition 12, φ|I is

constant, that is, φ|I ≡ 0 or 1. If φ|I ≡ 1, by Proposition 14, Q is (M,N→δ)-valid. If

φ|I ≡ 0, by the triangular commutativity of φ, we have that ρM

x→x+2~δ
= ψ

x+~δ
◦ φx = 0 for

SoCG 2018
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each point x ∈ I. That means x+ 2~δ /∈ IM . By Fact 18(i), dl(x, U(IM ))/2 < δ. Similarly,

ρN

x−~δ→x+~δ
= φx ◦ ψ

x−~δ
= 0 =⇒ x − ~δ /∈ IN , which is the same as to say x − 2~δ /∈ IN→δ

.

By Fact 18(i), dl(x, L(IN→δ
))/2 < δ. So ∀x ∈ I, we have d

(M,N→δ)
triv (x) < δ. This means Q is

δ(M,N→δ)-trivializable. Similar statement holds for intersection components of M→δ and N .

⇐= direction: We construct two families of linear maps {φx}, {ψx} as follows: On the

interval I := IQi
of each intersection component Qi of M and N→δ, set φ|I ≡ 1 if Qi

is (M,N→δ)-valid and φ|I ≡ 0 otherwise. Set φx ≡ 0 for all x not in the interval of any

intersection component. Similarly, construct {ψx}. Note that, by Proposition 14, φ := {φx}

is a morphism between M and N→δ, and ψ := {ψx} is a morphism between N and M→δ.

Hence, they satisfy the square commutativity. We show that they also satisfy the triangular

commutativity. We claim that ∀x ∈ IM , ρM

x→x+2~δ
= 1 =⇒ x+~δ ∈ IN and similar statement

holds for IN . From condition that δ > δ∗ and by Proposition 22, we know that there exist

two families of linear maps satisfying triangular commutativity everywhere, especially on the

pair of 1-dimensional persistence modules M |∆x
and N |∆x

. From triangular commutativity

we know that x+~δ ∈ IN since otherwise one cannot construct a δ-interleaving between M |∆x

and N |∆x
. Now for each x ∈ IM with ρM

x→x+2~δ
= 1, we have dl(x, U(IM ))/2 ≥ δ by Fact

18, and x+ ~δ ∈ IN by our claim. This implies that x ∈ IM ∩ IN→δ
is a point in an interval

of an intersection component Qx of M,N→δ which is not δ(M,N→δ)-trivializable. Hence, it

is (M,N→δ)-valid by the assumption. So, by our construction of φ on valid intersection

components, φx = 1. Symmetrically, we have that x + ~δ ∈ IN ∩ IM→δ is a point in an

interval of an intersection component of N and M→δ which is not δ(N,M→δ)-trivializable

since dl(x+ ~δ, L(IM ))/2 ≥ δ. So by our construction of ψ on valid intersection components,

ψ
x+~δ

= 1. Then, we have ρM

x→x+2~δ
= ψ

x+~δ
◦ φx for every nonzero linear map ρM

x→x+2~δ
.

The statement also holds for any nonzero linear map ρN

x→x+2~δ
. Therefore, the triangular

commutativity holds. J

Note that the above proof provides a construction of the interleaving maps for a specific δ

if it exists. Furthermore, the interleaving distance dI(M,N) is the infimum of all δ satisfying

the two conditions in the theorem, which means dI(M,N) is the infimum of all δ > δ∗

satisfying condition 2 in Theorem 23. Based on this observation, we propose a search

algorithm for computing the interleaving distance dI(M,N) for interval modules M and N .

I Definition 24 (Candidate set). For two interval modules M and N , and for each point x

in IM ∪ IN , let

D(x) = {dl(x, L(IM )),dl(x, L(IN )),dl(x, U(IM )),dl(x, U(IN ))} and

S = {d | d ∈ D(x) or 2d ∈ D(x) for some vertex x ∈ V (IM ) ∪ V (IN )} and

S≥δ := {d | d ≥ δ, d ∈ S}.

Algorithm Interleaving (output: dI(M,N), input: IM and IN with t vertices in total)

1. Compute the candidate set S and let ε be the smallest difference between any two numbers

in S. /* O(t) time */

2. Compute δ∗; Let δ = δ∗. /* O(t) time */

3. Output δ after a binary search in S≥δ∗ by following steps /* O(log t) probes */

let δ′ = δ + ε

Compute intersections IM ∩ IN
→δ′

and IN ∩ IM
→δ′

. /* O(t) time */

For each intersection component, check if it is valid or trivializable according to

Theorem 23. /* O(t) time */
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In the above algorithm, the following generic task of computing diagonal span is performed

for several steps. Let L and U be any two chains of vertical and horizontal edges that are

both x- and y-monotone. Assume that L and U have at most t vertices. Then, for a set

X of O(t) points in L, one can compute the intersection of ∆x with U for every x ∈ X in

O(t) total time. The idea is to first compute by a binary search a point x in X so that ∆x

intersects U if at all. Then, for other points in X, traverse from x in both directions while

searching for the intersections of the diagonal line with U in lock steps.

Now we analyze the complexity of the algorithm Interleaving. The candidate set, by

definition, has only 2t values which can be computed in O(t) time by the diagonal span

procedure. Proposition 25 shows that δ∗ is in S and can be determined by computing the one

dimensional interleaving distances dI(M |∆x
, N |∆x

) for diagonal lines passing through O(t)

vertices of IM and IN . This can be done in O(t) time by diagonal span procedure. Once

we determine δ∗, we search for δ = dI(M,N) in the truncated set Sδ≥δ∗ to satisfy the first

condition of Theorem 23. Intersections between two polygons IM and IN bounded by x- and

y-monotone chains can be computed in O(t) time by a simple traversal of the boundaries.

The validity and trivializability of each intersection component can be determined in time

linear in the number of its vertices due to Proposition 19 and Proposition 21 respectively.

Since the total number of intersection points is O(t), validity check takes O(t) time in total.

The check for trivializability also takes O(t) time if one uses the diagonal span procedure.

Proposition 25 below says that δ∗ is determined by a vertex in IM or IN and δ∗ ∈ S. Its

proof appears in the full version [18].

I Proposition 25. (i) δ∗ = maxx∈V (IM )∪V (IN ){dI(M |∆x
, N |∆x

)}, (ii) δ∗ ∈ S.

The correctness of the algorithm Interleaving already follows from Theorem 23 as

long as the candidate set contains the distance dI(M,N). The following concept of stable

intersections helps us to establish this result.

I Definition 26 (Stable intersection). Let Q be an intersection component of M and N . We

say Q is stable if every intersection point x ∈ IQ ∩B(IM ) ∩B(IN ) is non-degenerate, that is,

x is in the interior of two edges e1 ∈ E(IM ) and e2 ∈ E(IN ), and e1 ⊥ e2 at x.

From Proposition 42 and Corollary 43 in Appendix A of the full version [18], we have the

following claim.

I Proposition 27. d /∈ S if and only if each intersection component of M,N→d, and N→d,M

is stable.

The main property of a stable intersection component Q of M and N is that if we shift

one of the interval module, say N , to N→ε continuously for some small value ε ∈ R+, the

interval IQε of the intersection component Qε of M and N→ε changes continuously. Next

proposition follows directly from the stability of intersection components.

I Proposition 28. For a stable intersection component Q of M and N , there exists a positive

real δ ∈ R+ so that the following holds:

For each ε ∈ (−δ,+δ), there exists a unique intersection component Qε of M and N→ε so

that it is still stable and IQε ∩ IQ 6= ∅. Furthermore, there is a bijection µε : V (IQ) → V (IQε)

so that ∀x ∈ V (IQ), x and µε(x) are on the same horizontal, vertical, or diagonal line, and

d∞(µε(x), x) = ε. We call the set {Qε | ε ∈ (−δ,+δ)} a stable neighborhood of Q.

I Corollary 29. For a stable intersection component Q, we have:

(i) Q is (M,N)-valid iff each Qε in the stable neighborhood is (M,N→ε)-valid.

(ii) If Q is d(M,N)-trivializable, then Qε is (d+ 2ε)(M,N→ε)-trivializable.

SoCG 2018
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Proof. (i): Let Qε be any intersection component in a stable neighborhood of Q. We know

that if Q is (M,N)-valid, then V L(IQ) ⊆ L(IM ) and V U(IQ) ⊆ U(IN ). By Proposition 28,

µε(V L(IQ)) = V L(IQε) ⊆ L(IM ) and µε(UL(IQ)) = UL(IQε) ⊆ L(IN→ε). So Qε is

(M,N→ε)-valid. Other direction of the implication can be proved by switching the roles of Q

and Qε in the above argument.

(ii): From Proposition 28, we have that ∀x′ ∈ V (IQε), there exists a point x ∈ V (IQ)

so that x and x′ are on some horizontal, vertical, or diagonal line (∆x), and d∞(x, x′) ≤ ε.

Then, by Fact 18(ii), one observes

d
(M,N→ε)
triv (x) ≤ d

(M,N→ε)
triv (x′) + ε ≤ d

(M,N)
triv (x) + 2ε < d+ 2ε.

Therefore, Qε is (d+ 2ε)(M,N→ε)-trivializable. J

I Theorem 30. dI(M,N) ∈ S.

Proof. Suppose that d = dI(M,N) 6∈ S. Let d∗ be the largest value in S satisfying d∗ ≤ d.

Note that d ∈ S if and only if d = d∗. Then, d∗ < d by our assumption that d /∈ S.

By definition of interleaving distance, we have ∀d′ > d, there is a d′-interleaving between

M and N , and ∀d′′ < d, there is no d′′-interleaving between M and N . By Proposition 25(ii),

one can see that δ∗ ≤ d∗ < d. So, to get a contradiction, we just need to show that there

exists d′′, d∗ < d′′ < d, satisfying the condition 2 in Theorem 23.

Let Q be any intersection component of M,N→d or N,M→d. Without loss of generality,

assume Q is an intersection component of M and N→d. By Proposition 27, Q is stable.

We claim that there exists some ε > 0 such that Q−ε is an intersection component of

M and N→d−ε in a stable neighborhood of Q, and Q−ε is either (M,N→d−ε)-valid or

(d− ε)(M,N→d−ε)-trivializable.

Let ε > 0 be small enough so that Q+ε is a stable intersection component of M and

N→d+ε in a stable neighborhood of Q. By Theorem 23, Q+ε is either (M,N→(d+ε))-valid

or (d + ε)(M,N→(d+ε))-trivializable. If Q+ε is (M,N→(d+ε))-valid, then by Corollary 29(i),

any intersection component in a stable neighborhood of Q is valid, which means there

exists Q−ε that is (M,N→d−ε)-valid for some ε > 0. Now assume Q+ε is not (M,N→(d+ε))-

valid. Then, ∀ε > 0, Q+ε is (M,N→(d+ε))-trivializable, By Proposition 21 and 29(ii), we

have ∀x ∈ V (IQ), d
(M,N→d+ε)
triv (x) < d + 3ε, ∀ε > 0. Taking ε → 0, we get ∀x ∈ V (IQ),

d
(M,N→d)
triv (x) ≤ d. We claim that, actually, ∀x ∈ V (IQ), d

(M,N→d)
triv (x) < d. If the claim were

not true, some point x ∈ V (IQ) would exist so that d
(M,N→d)
triv (x) = d. There are two cases.

If x ∈ V (IM ) ∪ V (IN ), then obviously d = d
(M,N→d)
triv (x) ∈ S contradicting d 6= d∗. The

other case is that x is the intersection point of two perpendicular edges e1 ∈ E(IM ) and

e2 ∈ E(IN ) since Q is a stable intersection component. But, then x and πL(x) are always

on two parallel edges where L is either U(IM ) or L(IN ). By Proposition 41(ii) in [18], we

have d = d∗, reaching a contradiction. Now by our claim and Proposition 21, Q is d(M,N→d)-

trivializable where d > d∗ ≥ maxx∈V (IQ){d
(M,N→d)
triv (x)}. Let δ = d− d∗ and ε = δ/4. Since

d− ε = d− δ/4 > d− δ/2 = d− δ+ 2 · δ/4 = d∗ + 2ε and d∗ ≥ maxx∈V (IQ){d
(M,N→d)
triv (x)}, we

have d > d∗ and d− ε > maxx∈V (IQ){d
(M,N→d)
triv (x)} + 2ε. Therefore, by Corollary 21, Q−ε is

(d− ε)(M,N→d−ε)-trivializable.

The above argument shows that there exists a d′′-interleaving where d′′ = d − ε < d,

reaching a contradiction. J
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4 A lower bound on dI

In this section we propose a distance between two persistence modules that bounds the

interleaving distance from below. This distance is defined for n-D modules and not necessarily

only for 2-D modules. It is based on dimensions of the vectors involved with the two modules

and is efficiently computable.

Let [n] = {1, 2, . . . , n} be the set of all the integers from 1 to n. Let
(

[n]
k

)

= {s ⊆ [n] :

|s| = k} be the set of all subset in [n] with cardinality k.

I Definition 31. For a right continuous function f : Rn → Z, define the differential of f to

be ∆f : Rn → Z where

∆f(x) =
n

∑

k=0

(−1)k ·
∑

s∈([n]
k )

lim
ε→0+

f(x− ε ·
∑

i∈s

ei)

Note that for k = 0,
∑

s∈([n]
k ) limε→0+

f(x − ε ·
∑

i∈s ei) = f(x). We say f is nice if the

support supp(∆f) is finite and supp(f) ⊆ {x |x ≥ ~a} for some a ∈ R.

The differential ∆f is a function recording the change of function values of f at each

point, especially at ’jump points’. For n = 1, ∆f(x) = f(x) − limε→0+
f(x− ε). For n = 2,

which is the case we deal with, we have

∆f(x) = f(x) − lim
ε→0+

f(x− (ε, 0)) − lim
ε→0+

f(x− (0, ε)) + lim
ε→0+

f(x− (ε, ε)).

See Figure 2 and 3 for illustrations in 1- and 2-D cases respectively.

I Proposition 32. For a nice function f , f(x) =
∑

y≤x ∆f(y).

For a proof see the full version [18].

We also define ∆f+ = max{∆f, 0}, ∆f− = min{∆f, 0} and fΣ+(x) =
∑

y≤x ∆f+(y),

fΣ−(x) =
∑

y≤x ∆f−(y). Note that fΣ+ ≥ 0, fΣ− ≤ 0, and are both monotonic functions.

By definition and property of ∆f , we have f = fΣ+ + fΣ−.

I Definition 33. For any δ > 0, we define the δ-extension of f as f+δ = fΣ+(x+δ)+fΣ−(x−δ).

Similarly we define the δ-shrinking of f as f−δ = fΣ−(x+ δ) + fΣ+(x− δ) (see Figure 2).

Proposition 34 below follows from the definition.

I Proposition 34. For any δ > 0 ∈ R, we have f±δ(x) = f(x∓ δ) +
∑

y≤x±δ,y 6≤x∓δ ∆f±(y).

That is to say, for any δ ∈ R, the extended (shrunk) function fδ, can be computed by adding

to f(x− |δ|) the positive (negative) difference values of ∆f in (x− |δ|, x+ |δ|]. From this, it

follows:

I Corollary 35. Given 0 ≤ δ ≤ δ′ ∈ R, we have f+δ ≤ f+δ′

and f−δ ≥ f−δ′

.

R

R

R

R

δ

δ

f

f+δ f−δ∆f

fΣ+(x+ δ)

fΣ−
(x− δ) δ

δ

fΣ+(x− δ)

fΣ−
(x+ δ)

Figure 2 A nice function and its differential (left), its δ-extension (middle), δ-shrinking (right).
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surjective linear maps with dim(Mxij
) − dim(Mxij −1) < 0. By definition of ∆dm, this means

that, for each pair (xij−1, xij
), there exists a collection y1, y2, . . . such that yl ≤ xij

, yl 6≤ xij−1

and
∑

l(∆dmM)−(yl) ≤ εij
. All these y’s also satisfy that y ≤ x+ ~δ, y 6≤ x− ~δ. So,

∑

y≤x+δ,y 6≤x−δ

(∆dmM−)(y) ≤
∑

j

εj = dim(im k) − dim(Mx0) ≤ dim(Nx) − dim(M
x−~δ

),

which gives (dmM)−δ(x) ≤ dmN(x). Similarly, we can show (dmN)−δ(x) ≤ dmM(x). J

Notice that for dimension functions which are always non-negative, we have d0 = d−. It

may seem that we could have avoided introducing d+ altogether. But, since nice functions

also include negative valued functions, one can verify that d+ plays the same role for such

functions as d− does for non-negative ones. Then to make d0 a distance on the space of all

nice functions, one needs to define it as the minimum of both d+ and d−. For dimension

functions, d+ is not necessarily bounded above by dI .

4.2 Computation of d0

For computational purpose, assume that two input persistence modules M and N are finite

in that they are functors on the subcategory {1, . . . , k}n ⊂ Rn and the dimension functions

f := dmM , g := dmN have been given as input on an n-dimensional k-ary grid.

First, for the dimension functions f, g, we compute ∆f,∆g,∆f±,∆g±, f±, g± in O(k2)

time. By Proposition 34, for any δ ∈ Z+, we can also compute f±δ, g±δ in O(k2) time.

Then we can apply the binary search to find the minimal value δ within a bounded region

such that f, g are within δ-extension or δ-shrinking. This takes O(log k) time. So the entire

computation takes O(k2 log k) time.

5 Conclusions

In this paper, we presented an efficient algorithm to compute the bottleneck distance of two

2-D persistence modules given by indecomposables that may have non-constant complexity.

No such algorithm for such case is known. Making the algorithm more efficient will be one

of our future goals. Extending the algorithm or its modification to larger classes of modules

such as the n-D modules or exact pfd bi-modules considered in [14] will be interesting. The

definition of valid and trivializable intersection component and Theorem 21 can be extended

easily to n-D modules. So is the algorithm– possibly with sacrificing some of the efficiencies.

But, further work is necessary to establish the correctness of the algorithm for this general

case.

The assumption of nice modules for dimension distance d0 is needed so that the dimension

function, which is a weaker invariant compared to the rank invariants or barcodes in one

dimensional case, provides meaningful information without ambiguity. There are cases where

the dimension distance can be larger than interleaving distance if the assumption of nice

modules is dropped. Of course, one can adjust the definition of dimension distance to

incorporate more information so that it remains bounded from above by the interleaving

distance.
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